Bayesian Multivariate Regression Analysis with a New Class of Skewed Distributions

نویسندگان

  • José T.A.S. Ferreira
  • Mark F.J. Steel
چکیده

In this paper, we introduce a novel class of skewed multivariate distributions and, more generally, a method of building such a class on the basis of univariate skewed distributions. The method is based on a general linear transformation of a multidimensional random variable with independent components, each with a skewed distribution. Our proposed class of multivariate skewed distributions has a simple, intuitive form for the pdf, moment existence only depends on the existence of the moments of the underlying symmetric univariate distributions, and we avoid any conditioning on unobserved variables. In addition, we can freely allow for any mean and covariance structure in combination with any magnitude and direction of skewness. In order to deal with both skewness and fat tails, we introduce multivariate skewed regression models with fat tails, based on Student distributions. We present two main classes of such distributions, one of which is novel even under symmetry. Under standard non-informative priors on both regression and scale parameters, we derive conditions for propriety of the posterior and for existence of posterior moments. We describe MCMC samplers for conducting Bayesian inference and analyse two applications, one concerning the distribution of various measures of firm size and another on a set of biomedical data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

On describing multivariate skewed distribu- tions: A directional approach

Most multivariate measures of skewness in the literature measure the overall skewness of a distribution. These measures were designed for testing the hypothesis of distributional symmetry and their relevance for describing skewed distributions is less obvious. In this article, we consider the problem of characterising the skewness of multivariate distributions. We define directional skewness as...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis

We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In parti...

متن کامل

Robust mixture modeling based on scale mixtures of skew-normal distributions

Modelling covariance structure in the analysis of repeated measures data, Statist. Med. A new class of multivariate skew distributions with applications to Bayesian regression models, The Canadion Journal of Analysis for the Student-t regression model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004